Histologie der Speiseröhre (Ratte)
Hintergrundinformation zum Präparationsabend in der MGW 02/2014
Dr. Thomas Kann

Präparation:
Fixierung in Bouin
Einbettung in Paraplast
Schneiden am Reichert Rotationsmikrotom: Schnittdicke 10 µm
Färbung mit Pseudo Azan
Eindecken in Malinol

Gewebsarten, die im Präparat zu finden sind:
Epithelgewebe
Bindegewebe und Abwehrzellen
Muskelgewebe
Nervengewebe

AZAN Färbung
Kernechtrubin o. Azokarmin als Kernfärbung (saurer Farbstoff bindet an Histone der DNA)
Entfärben & „Beizen“ des BG mit 5% Phosphorwolframsäure
Azan Lösung: Orange G (feindisperse Zytoplasmafärbung) + grobdisperses Anilinblau

Trichromfärbung: Zellkerne – Zytoplasma - BG


Färbung: Azan: Zellkerne rot
Erythrocyten rot-orange
Muskelzellen rot-violett
Kollagenes + retik. BG: blau
Schleim: blau

Historischer Rückblick

Aus Koelliker: Mikroskopische Anatomie oder Gewebelehre 1854

Aus Koelliker: Mikroskopische Anatomie oder Gewebelehre 1854

Quelle: L. C. Junqueira, J. Carneiro und R. O. Kelley, Histologie, M. Gratzl Hsg.,Springer 2002
O. Bucher, H. Wartenberg: Cytologie, Histologie und mikroskopische Anatomie des Menschen Verlag Hans Huber; 11 Auflage; 1992
O. Bucher, H. Wartenberg: Cytologie, Histologie und mikroskopische Anatomie des Menschen Verlag Hans Huber; 11 Auflage; 1992
Ösophagus der Ratte: Pseudo-AZAN
Ösophagus der Ratte: Pseudo-AZAN; 100x
Ösophagus der Ratte: Pseudo-AZAN; 100x
Ösophagus der Ratte: Pseudo-AZAN; 100x
Ösophagus der Ratte: Giemsa; 100x
http://www.histonet2000.de/praeparat.php?pzid=012_060
Ösophagus der Ratte: Giemsa; 400x
Ösophagus der Ratte: Giemsa; 400x
Ösophagus der Ratte: Pseudo-AZAN; 400x
Plattenepithelzellen (superfizialzellen) aus der menschl. Mundschleimhaut: Methylenblau: 400x
Plattenepithelzellen (superfizialzellen + Parabasalzellen) aus der menschl. Mundschleimhaut: Methylenblau: 400x
Plattenepithelzellen (superfizialzellen + Parabasalzellen) aus der menschl. Mundschleimhaut: Methylenblau: 400x
Plattenepithelzellen (superfizialzellen + Parabasalzellen) aus der menschl. Mundschleimhaut: Fuchsin: 400x
Plattenepithelzellen (superfizialzellen + Parabasalzellen) aus der menschl. Mundschleimhaut: Fuchsin: 400x
Plattenepithelzellen (superfizialzellen) + Leukozyten aus der menschl. Mundschleimhaut: Fuchsin: 400x
Kolpozytologie: normale Plattenepithelzellend der Portio uteri (Pap I)
Intermediärzellen (basophiles Plasma, bläschenförmige Kerne) und Superfizialzellen (eosinophiles Plasma, Pyknotische Kerne
http://www.stuedeli.net/reto/medizin/kdb/content/gyni/cin.html
Die Zellen des äußeren Muttermundes bestehen aus mehrschichtigem, unverhorntem Plattenepithel. Sie lassen sich aufgrund ihres Aussehens von den Zellen des Gebärmutterhalskanals, welcher mit Zylinderepithel bedeckt ist, abgrenzen. Die Plattenepithelzellen lassen sich wiederum aufgliedern. Zellen der obersten Zellschicht werden als Superfizialzellen bezeichnet. Diese sind 45 bis 60 µm groß. Ihr Zellplasma zeigt sich zart rosa gefärbt. Die Zelle selbst ist von vieleckiger Form. Der Kern ist normalerweise mit 5 bis 7 µm im Vergleich zur Fläche des Zellplasmas sehr klein. Das Chromatin im Kern ist dabei dicht gepackt. Daraus folgt eine tiefe Blaufärbung der Zellkerne. Die Superfizialzellen stellen in der ersten Zyklusphase den Hauptteil der im Abstrich sichtbaren Zellen, da in dieser Phase unter dem Einfluss von Östrogen das Plattenepithel proliferiert.[1]

Tiefer liegende Plattenepithelzellen werden als kleine und große Intermediärzellen bezeichnet. Die großen Intermediärzellen haben wie die Superfizialzellen eine vieleckige Form. Sie weisen dieselbe Größe auf wie die Superfizialzellen. Jedoch ist ihr Zellplasma sehr reich an Glykogen, weswegen es zart blaugrün (cyanophil) gefärbt ist. Die Kerne sind bis zu 10 µm groß. Ihr Chromatin ist etwas lockerer gepackt als der Kerninhalt der oberflächlicheren Zellen. Die großen Intermediärzellen stellen in der zweiten Zyklushälfte durch den Einfluss der Gestagen die Mehrheit der sichtbaren Zellen. Als kleine Superfizialzellen bezeichnet man Zellen mit ebenso zart-blaugrünem Plasma. Sie sind jedoch kleiner und besitzen einen größeren Kern. Die Zellen sind von rundlicher Form. Sie können bei lang dauernder Einnahme eines Kontrazeptivums, den Wechseljahren und hormonellen Störungen vermehrt vorkommen. Außerdem enthält der Kern sehr kleine Zellen mit einem großen Kern und wenig Zellplasma, die zum Plattenepithel gehören. Diese, sogenannten Parabasalzellen sind lichtmikroskopisch nicht ausreichend beurteilbar. Sie sind jedoch die Stammzellen des Plattenepithels, von denen sich Superfizial- und Intermediärzellen herleiten.[1] (wikipedia)

Gebärmutterhalsabstrich mit normalen Superfizial- und Intermediärzellen des Plattenepithels. Superfizialzellen mit pyknotischen kleinen Kernen und reichlich rotem oder türkisfarbenem Zytoplasma, kleine und große Intermediärzellen mit bläschenförmigen Kernen und gleicher Zytoplasmafarbe. Mischflora aus Döderlein-Bakterien und Kokken. Zerfallene neutrophile Granulozyten. Gruppe I Münchner -, within normal limits Bethesda-Nomenklatur. Pap.-Fbg.
http://www-public.rz.uni-duesseldorf.de/~kinzel/cytopathologie/abb28.htm
Ösophagus der Ratte: Pseudo-AZAN; 400x
Ösophagus der Ratte: Pseudo-AZAN; 400x
normale Ösophagusschleimhaut
Beschreibung Mehrschichtiges, nicht verhornendes Plattenepithel. Ausreifung der Zellen zum Lumen hin mit zunehmender Verkleinerung der Kerne und intrazytoplasmatischer Glykogeneinlagerung (helles Zytoplasma, das Glykogen ist herausgelöst). Einreihige Basalzellschicht.
Färbung HE

“The lumen (L) is surrounded by the tunica mucosa (M); the lining of the esophagus in all species is stratified squamous epithelium, and in most animals it's keratinized, sometimes quite heavily. The tunica submucosa (S) is seen here as a space between the tunica mucosa and the muscularis externa (this is a shrinkage artifact of preparation). The tunica muscularis externa (TM) contains both skeletal and smooth muscle fibers. In some species (dogs, ruminants, horses) the entire tunica muscularis externa of the esophagus is composed of skeletal muscle; in birds it is entirely smooth muscle; and in most animals it makes a transition from skeletal to smooth muscle about half-way down (see below). These features can be used as landmarks to identify the organ and to determine where the section was taken. “

VM8054 Veterinary Histology
Exercise 18: Digestive System: Esophagus and Stomach
Author: Dr. Thomas Caceci

Stratified squamous epithelium is well suited to this particular location. The level of abrasion is high, especially in those species which eat a diet heavy in roughage. The proliferative nature of stratified squamous epithelium enables it to replace the surface that's constantly being worn away.
Some textbooks will tell you that "wet" keratinized stratified squamous epithelium doesn't develop a stratum granulosum, as the "dry" keratinized epithelium of the skin. This isn't true. Although this specimen is clearly from a "wet" location, the esophageal mucosa, the epithelium has a stratum granulosum.
One more clue to recognition of the esophagus is the presence of glands in the submucosa. These are referred to as esophageal glands proper, a term that implies they're a specific part of this organ, and are distinct from glands in the mucosal layer. Esophageal glands proper are outside the muscularis mucosae, and hence by definition in the submucosa.

VM8054 Veterinary Histology
Exercise 18: Digestive System: Esophagus and Stomach
Author: Dr. Thomas Caceci

In the upper portion of the esophagus in most, if not all, mammals, the tunica muscularis is composed of skeletal muscle arranged in two layers: inner circular and outer longitudinal. You can see this in the image above. This is from the upper (cranial) esophagus and shows only the tunica muscularis. The inset shows a higher magnification of the muscle: striations are clearly visible in it, so it's skeletal, not smooth, muscle.
In most species, skeletal muscle is replaced by smooth muscle as one descends deeper into the organ; the tunica muscularis near the junction with the stomach is wholly smooth muscle in most animals. The mixed nature of the tunica muscularis in the esophagus is seen below: in this transition zone in a primate esophagus, where both type of fibers exist, there's a very large size disparity between them.
Dogs and ruminants are exceptions to this statement. In these animals, the tunica muscularis is entirely skeletal muscle for the entire length of the esophagus, which facilitates vomiting. In ruminants, regurgitation of swallowed food is normal, and the "cud" that these animals chew is material they have previously swallowed, then brought up again for reconsideration.
Although in dogs vomiting is technically not a "normal" process, there are sound reasons for them to do it. Many wild dogs swallow small animals like mice whole (see above). In the case of a bitch weaning pups, the only way to get the food back to them is to gulp it down and barf it back up outside the den, so the pups can have a nice hot meal. In domesticated strains the ability to vomit voluntarily hasn't been lost.
Muköse Drüsen in Submucosa

http://www.mh-hannover.de/19185.html

http://www.siumed.edu/~dking2/erg/GI060b.htm

http://www.siumed.edu/~dking2/erg/GI060b.htm

http://www.vetmed.vt.edu/education/curriculum/vm8054/Labs/Lab18/Lab18.htm

 

Histophysiologie

Nahrungstransport
Ösophagussphincter
Säureneutralisation
Reflexe: Brechreiz
Nahrungstransport

Gefaltete Schleimhaut
Drüsen
Ring- und Längsmuskulatur

http://www.yalemedicalgroup.org/stw/Page.asp?PageID=STW039611

Oberer Ösophagussphincter


GI Motility online (May 2006) | doi:10.1038/gimo6

The upper esophageal sphincter (UES) is a high-pressure zone situated between the pharynx and the cervical esophagus. The UES is a musculocartilaginous structure composed of the posterior surface of the thyroid and cricoid cartilage, the hyoid bone, and three muscles: cricopharyngeus, thyropharyngeus, and cranial cervical esophagus. Each muscle plays a different role in UES function.33 These three muscles spread upward, posteriorly, where they insert into the esophageal submucosa after crossing the muscle bundles of the opposite side. The thyropharyngeus muscle is obliquely oriented, whereas the cricopharyngeus muscle is transversely oriented. Between these two muscles, there is a zone of sparse musculature—the Killian's triangle, from which Zenker's diverticulum might emerge. The cricopharyngeus (CP) muscle is a striated muscle attached to the cricoid cartilage. It forms a C-shaped muscular band that produces maximum tension in the anteroposterior direction and less tension in lateral direction.34 Structurally, biochemically, and mechanically, the CP is different from the surrounding pharyngeal and esophageal muscles. It is composed of a mixture of fast- and slow-twitch fibers, with the slow fibers being predominant and having a diameter of 25 to 35 m. The CP is suspended between the cricoid processes, surrounds the narrowest part of pharynx, and extends caudally where it blends with the circular muscle of the cervical esophagus.
The cervical esophagus contains predominantly striated muscle fibers, but occasionally smooth fibers are found in the center of the muscle.33 The muscle fibers are arranged in two layers: the external layer containing longitudinal arranged fibers, and the internal layer containing circular or transversely arranged fibers. The external longitudinal layer of the cervical esophagus originates from the dorsal plane of the cricoid cartilage constituting a sparse muscle area: the Laimer's triangle. The external longitudinal layer courses down the length of the entire esophagus. At its distal end the longitudinal fibers become more oblique and end along the anterior and posterior gastric wall.35 The internal circular layer of muscle originates at the level of cricoid cartilage and in descending forms incomplete circles.35
Upper esophageal sphincter function is controlled by a variety of reflexes that involve afferent inputs to the motor neurons innervating the sphincter. These reflexes elicit either contraction or relaxation of the tonic activity of the UES. Inability of the sphincter to open or discoordination of timing between the opening of the UES with the pharyngeal push of ingested contents leads to difficulty in swallowing known as oropharyngeal dysphagia

GI Motility online (2006) doi:10.1038/gimo6
Published 16 May 2006

Esophagus - anatomy and development
Braden Kuo, M.D. and Daniela Urma, M.D

The lower esophageal sphincter is a high-pressure zone located where the esophagus merges with the stomach (Figure 8). The LES is a functional unit composed of an intrinsic and an extrinsic component. The intrinsic structure of LES consists of esophageal muscle fibers and is under neurohormonal influence. The extrinsic component consists of the diaphragm muscle, which functions as an adjunctive external sphincter that raises the pressure in the terminal esophagus related to the movements of respiration. (Figure 9). Malfunction in any of these two components is the cause of gastroesophageal reflux and its subsequent symptoms and mucosal changes
The intrinsic component of the LES is composed of circular layers of the esophagus, clasp-like semicircular smooth muscle fibers on the right side, and sling-like oblique gastric muscle fibers on the left side.37 The circular muscles of the LES are thicker than the adjacent esophagus. The clasp-like semicircular fibers have significant myogenic tone but are not very responsive to cholinergic stimulation, whereas the sling-like oblique gastric fibers have little resting tone but contract vigorously to cholinergic stimulation.37
The extrinsic component of the LES is composed of the crural diaphragm, which forms the esophageal hiatus, and represents a channel through which the esophagus enters into the abdomen. The crural diaphragm encircles the proximal 2 to 4 cm of the LES, and determines inspiratory spike-like increases in LES pressure as measured by esophageal manometry.38
The endoscopic localization of the LES is different from the manometric localization. The endoscopic localization of the LES is presumably determined by changes in the esophageal mucosa color owing to transition from nonstratified squamous esophageal epithelium to the gastric mucosa, changes known as the Z-line. A study correlating manometric and endoscopic localization of the LES (Z-line) found that the functional location of LES was 3 cm distal to the Z-line.39, 40
Three-dimensional (3D) manometric measures of the lower esophageal high-pressure zone showed a marked radial and longitudinal asymmetry, with higher pressures toward the left posterior direction. Radial pressures peak at the respiratory inversion point during esophageal manometry where inspiration converts from a positive pressure as measured by pressure sensors to a negative pressure as the pressure sensor enters the intrathoracic cavity. The high-pressure zone appears to coincide with asymmetric thickening of the muscular layer at the gastroesophageal junction, which corresponds to the gastric "sling" fibers and to the semicircular "clasp" fibers.41
The LES is innervated by both parasympathetic (vagus) and sympathetic (primarily splanchnic) nerves, with the vagal pathways being essential for reflex relaxation of LES.42 Vagal sensory afferents from the LES and distal esophagus end in nucleus tractus solitarius of the hindbrain. The motor innervation of the LES is topographically provided through preganglionic fibers from the dorsal motor nucleus of the vagus. The dorsal motor nucleus and the tractus solitarius nucleus form a dorsal vagal complex in the hindbrain that coordinates reflex control of the sphincter.42

Unterer Ösophagussphincter:
Intrinsische Komponente: verdickte Muscularis des Ösophagus
Extrinsische Komponente: Zwerchfell


GI Motility online (May 2006) | doi:10.1038/gimo6

 
Säure-Abwehr Mechanismen 
 •Esophageal mucosa consists of partially keratinized stratified squamous epithelium with three functional regions: stratum corneum, stratum spinosum, and stratum germinativum.
•Major esophageal defenses against injury by contact with an acidic refluxate are (1) luminal acid clearance, and (2) tissue resistance. Tissue resistance has three protective components: these designated as preepithelial, epithelial, and postepithelial defenses.
•The preepithelial defense consists of surface mucus and unstirred water layer within which bicarbonate ions are entrapped providing an alkaline microenvironment. The preepithelial defense in esophagus is weak relative to that of stomach and duodenum.
•The epithelial defense consists of the apical cell membranes and junctional complexes; these act to limit the diffusion of H+ from lumen to cell and intercellular space, respectively. In esophagitis, the junctional complexes are damaged, leading to increased H+ diffusion and dilation of the intercellular spaces.
•The postepithelial defense is provided by the acid buffering effects of HCO3- in cells and within the intracellular space. Blood supply is essential for the delivery of HCO3-. A Na+-dependent Cl-/HCO3- exchanger on the basolateral membrane of squamous cells provide a route for blood-derived HCO3- to enter the cell cytosol
•Cells in the stratum germinativum repair the damaged epithelium by two processes: restitution and replication. Epidermal growth factor (EGF) is a major promoter of cell replication and this can begin as early as 30 minutes after acid injury.

GI Motility online (May 2006) | doi:10.1038/gimo15
 
 Präepitheliale Säureneutralisation.

GI Motility online (May 2006) | doi:10.1038/gimo15
  Epitheliale und postepitheliale Säureabwehr
Epitheliale Umsatzrate: 5-8d

GI Motility online (May 2006) | doi:10.1038/gimo15

Präepithelial
Schleim + Bicarbonat
Epithelial:
Zellmembran
Interzell. Raum
Epitheliale Umsatzrate: 5-8d
Postepithelial
Blutversorgung 

Literatur
L.C. Junqueira; J. Carneiro Histologie: Zytologie, Histologie und mikroskopische Anatomie des Menschen:; übersetzt von Th. Schiebler; 4. Auflage; Springer; 1996

Schwarzacher, Schnedl, Pavelka Histologie:; 5. Auflage; Facultas, 1995

O. Bucher, H. Wartenberg: Cytologie, Histologie und mikroskopische Anatomie des Menschen Verlag Hans Huber; 11 Auflage; 1992

V. Patzelt: Histologie; 2. Auflage; 1946

Sobotta-Welsch: Lehrbuch der Histologie; 2. Auflage; Urban & Fischer; 2006

S. Silbernagl; A. Despopoulos: Taschenatlas der Physiologie; 4. Auflage; Thieme 1991
A. Stevens, J. Lowe: Histologie; übersetzt von K. Tiedemann; VCH Verlag 1992;